Assessment of ensemble classifiers using the bagging technique for improved land cover classification of multispectral satellite images

نویسندگان

  • Hassan Mohamed
  • Abdel-Azim Negm
  • Mohamed Zahran
  • Oliver Saavedra
چکیده

This study evaluates an approach for Land-Use Land-Cover classification (LULC) using multispectral satellite images. This proposed approach uses the Bagging Ensemble (BE) technique with Random Forest (RF) as a base classifier for improving classification performance by reducing errors and prediction variance. A pixel-based supervised classification technique with Principle Component Analysis (PCA) for feature selection from available attributes using a Landsat 8 image is developed. These attributes include coastal, visible, near-infrared, short-wave infrared and thermal bands in addition to Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI). The study is performed in a heterogeneous coastal area divided into five classes: water, vegetation, grass-lake-type, sand, and building. To evaluate the classification accuracy of BE with RF, it is compared to BE with Support Vector Machine (SVM) and Neural Network (NN) as base classifiers. The results are evaluated using the following output: commission, omission errors, and overall accuracy. The results showed that the proposed approach using BE with RF outperforms SVM and NN classifiers with 93.3% overall accuracy. The BE with SVM and NN classifiers yielded 92.6% and 92.1% overall accuracy, respectively. It is revealed that using BE with RF as a base classifier outperforms other base classifiers as SVM and NN. In addition, omission and commission errors were reduced by using BE with RF and NN classifiers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods

Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...

متن کامل

Improving reservoir rock classification in heterogeneous carbonates using boosting and bagging strategies: A case study of early Triassic carbonates of coastal Fars, south Iran

An accurate reservoir characterization is a crucial task for the development of quantitative geological models and reservoir simulation. In the present research work, a novel view is presented on the reservoir characterization using the advantages of thin section image analysis and intelligent classification algorithms. The proposed methodology comprises three main steps. First, four classes of...

متن کامل

مقایسه روش‌های طبقه‌بندی‌کننده حداکثر مشابهت و حداقل فاصله از میانگین در تهیه نقشه پوشش اراضی (مطالعه موردی: استان اصفهان)

Land cover maps derived from satellite images play a key role in regional and national land cover assessments. In order to compare maximum likelihood and minimum distance to mean classifiers, LISS-III images from IRS-P6 satellite were acquired in August 2008 from the western part of Isfahan. First, the LISS-III image was georeferenced. The Root Mean Square error of less than one pixel was the r...

متن کامل

Study of Effectiveness of Support Vector Machines for Multispectral Data

-Land use classification is an important part of many remote-sensing applications. A lot of research has gone into the application of classifiers to remote-sensing images. Multi-spectral satellite imagery is an economical, precise and appropriate method of obtaining information on land use and land cover. In this paper, we have proposed an efficient technique for classifying the multispectral s...

متن کامل

Evaluation of Multiple Classifier Combination Techniques for Land Cover Classification Using Multisource Remote Sensing Data

Use of multisource remote sensing data, particularly Synthetic Aperture Radar (SAR) and optical images, can improve performance of land cover classification since many types of information are involved in the classification process. Recently, the multiple classification systems (MCS) or ensemble classifiers has been developed and increasingly used for classifying remote sensing data. It is cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. Arab J. Inf. Technol.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2018